MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR CHAPTER 14

- **1.** Let $(x_n)_n$ be a sequence and a, b be reals with a < b. Suppose that for each $N \in \mathbb{N}$ there is $n \ge N$ such that $x_n \in [a, b]$. Prove that $(x_n)_n$ has a convergent subsequence whose limit is in [a, b].
- **2.** Suppose that for each $n \in \mathbb{N}$, $|x_{n+1} x_n| \leq \frac{1}{2^n}$, and prove that $(x_n)_n$ is Cauchy. Deduce that $(x_n)_n$ converges.
- **3.** Let $(x_k)_k$ be a sequence.
 - (a) Define another sequence $(a_n)_n$ such that for each $k \in \mathbb{N}$, x_k is the k^{th} partial sum of the series $\sum_{n=1}^{\infty} a_n$.
 - (b) Once again, suppose that for each $n \in \mathbb{N}$, $|x_{n+1} x_n| \leq \frac{1}{2^n}$, and, using part (a) and the comparison test **for series**, prove that $(x_n)_n$ converges.

HINT: By part (a), the sequence $(x_k)_k$ converges if and if $\sum_{n=1}^{\infty} a_n$ converges.

- **4.** Fix a real $\lambda > 1$.
 - (a) Prove that for any fixed integer $k \ge 0$, $\lim_{n \to \infty} \frac{n^k}{\lambda^n} = 0$.
 - (b) Conclude that for any polynomial p(x), $\lim_{n \to \infty} \frac{p(n)}{\lambda^n} = 0$.
 - (c) Also prove that for any polynomial p(x), $\sum_{n=1}^{\infty} \frac{p(n)}{\lambda^n}$ converges.
- 5. Let $(a_n)_n$ be a sequence of non-negative reals. Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then for any $k \ge 1$, $\sum_{n=1}^{\infty} a_n^k$ also converges.
- **6.** (a) Suppose that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n^2$ both converge, and prove that $\sum_{n=1}^{\infty} a_n b_n$ converges.
 - (b) For each real $\lambda > 2$, construct an example of $(a_n)_n, (b_n)_n$ such that $\sum_{n=1}^{\infty} a_n^{\lambda}$ and $\sum_{n=1}^{\infty} b_n^{\lambda}$ both converge, but $\sum_{n=1}^{\infty} a_n b_n$ diverges.
- 7. (Tricky) Let $(x_n)_n$ be sequence and $L \in \mathbb{R}$. Suppose that any subsequence $(x_{n_k})_k$ has a further subsequence $(x_{n_{k_l}})_l$ that converges to L. Prove that $(x_n)_n$ converges to L. HINT: Prove the contrapositive. Assume that $(x_n)_n$ doesn't converge to L and build a subsequence "far" from L.