MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR CHAPTER 14

1. Let $\left(x_{n}\right)_{n}$ be a sequence and a, b be reals with $a<b$. Suppose that for each $N \in \mathbb{N}$ there is $n \geq N$ such that $x_{n} \in[a, b]$. Prove that $\left(x_{n}\right)_{n}$ has a convergent subsequence whose limit is in $[a, b]$.
2. Suppose that for each $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2^{n}}$, and prove that $\left(x_{n}\right)_{n}$ is Cauchy. Deduce that $\left(x_{n}\right)_{n}$ converges.
3. Let $\left(x_{k}\right)_{k}$ be a sequence.
(a) Define another sequence $\left(a_{n}\right)_{n}$ such that for each $k \in \mathbb{N}, x_{k}$ is the $k^{\text {th }}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$.
(b) Once again, suppose that for each $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2^{n}}$, and, using part (a) and the comparison test for series, prove that $\left(x_{n}\right)_{n}$ converges.
Hint: By part (a), the sequence $\left(x_{k}\right)_{k}$ converges if and if $\sum_{n=1}^{\infty} a_{n}$ converges.
4. Fix a real $\lambda>1$.
(a) Prove that for any fixed integer $k \geq 0, \lim _{n \rightarrow \infty} \frac{n^{k}}{\lambda^{n}}=0$.
(b) Conclude that for any polynomial $p(x), \lim _{n \rightarrow \infty} \frac{p(n)}{\lambda^{n}}=0$.
(c) Also prove that for any polynomial $p(x), \sum_{n=1}^{\infty} \frac{p(n)}{\lambda^{n}}$ converges.
5. Let $\left(a_{n}\right)_{n}$ be a sequence of non-negative reals. Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges, then for any $k \geq 1, \sum_{n=1}^{\infty} a_{n}^{k}$ also converges.
6. (a) Suppose that $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ both converge, and prove that $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
(b) For each real $\lambda>2$, construct an example of $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$ such that $\sum_{n=1}^{\infty} a_{n}^{\lambda}$ and $\sum_{n=1}^{\infty} b_{n}^{\lambda}$ both converge, but $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges.
7. (Tricky) Let $\left(x_{n}\right)_{n}$ be sequence and $L \in \mathbb{R}$. Suppose that any subsequence $\left(x_{n_{k}}\right)_{k}$ has a further subsequence $\left(x_{n_{k_{l}}}\right)_{l}$ that converges to L. Prove that $\left(x_{n}\right)_{n}$ converges to L.
Hint: Prove the contrapositive. Assume that $\left(x_{n}\right)_{n}$ doesn't converge to L and build a subsequence "far" from L.
